Revisiting Batch Norm Initialization Jim Davis, Logan Frank Department of Computer Science and Engineering, Ohio State University # 1. Batch Normalization (BN) in Deep Neural Networks ## Two per-channel operations - Head: Normalizes data - Tail: Learnable affine transformation Constrains intermediate features, enabling smoother and faster optimization, and stochasticity of batch statistics can benefit generalization ## 2. BN: Forward Formulation - Compute mean (μ) and variance (σ^2) across batch dimension - Use computed statistics to normalize the data ($\mu = 0$, $\sigma^2 = 1$) - Apply an affine transformation to the normalized data using learnable parameters: scale (γ) and shift (β) $$\mu_B = \frac{1}{m} \sum_{i=1}^m x_i \longrightarrow \hat{X} = \frac{X - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \longrightarrow Y = \gamma \cdot \hat{X} + \beta$$ $$\sigma_B^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2 \longrightarrow \hat{X} = \frac{X - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \longrightarrow Y = \gamma \cdot \hat{X} + \beta$$ ## 3. Observed Issues with BN Learnable BN parameters are initialized to $\gamma = 1$ and $\beta = 0$ (identity function) We observed that the final learned parameter values tend to remain close to their initialization Furthermore, we observed that the BN normalization head can yield overly large values ($\pm 6\sigma$) for the proceeding layer, which can be undesirable for training # 4. Proposed Adjustments to BN Scale Parameter γ ## Initialize γ to a value in (0,1] - Directly addresses overly large values after normalization by immediately scaling down the data (with no additional parameters) - Enables BN shift parameter β to have a broader reach on scaled data before the proceeding activation function (in many cases ReLU) #### Reduce the learning rate α on γ - Divide learning rate on γ by constant c ($\alpha_{\gamma} = \alpha/c$) - Allows for fine-grained search near initialization value - Leave β with original learning rate, enabling it to have a broader and now more stable search of the normalized and scaled data # 5. BN: Gradients and Insights Using a fully-connected layer as illustration (below, left), we use the gradients given in the original BN paper to derive the gradient of the loss with respect to the input $\partial \mathcal{L}/\partial x_i$ (below, right) ## Insights - No effects introduced by $\gamma < 1$ for the first backward pass - Negligible effects for remainder of training - More insights shown in the paper $$\sigma_B^2 = \sigma_{act}^2 \cdot \gamma_{prev}^2 \sum_{k=1}^N w_k^2 \longrightarrow \frac{\gamma_{curr}}{\gamma_{prev} \cdot \sqrt{\sigma_{act}^2 \sum w_k^2 + \epsilon}} = \frac{1}{\sqrt{\sigma_{act}^2 \sum w_k^2 + \epsilon}}$$ # 6. Training Details **BN** scale initialization: $\gamma \in \{0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0\}$ Examine subset of values after initial CIFAR-10 experiments BN scale learning rate reduction factor: c = 100 # 7. Statistical Significance Different RNG seeds can cause variations in final score (accuracy) For *each* experiment, we conduct 15 runs with different seeds, aggregate the results of each run (to report a mean and standard deviation), and compare to a baseline (or related approach) using a one-sided paired t-test (using a p-value of 0.05) #### 8. Results - Significant improvements across multiple initial values of γ and learning rates for CIFAR-10 (T1.a), as well as CIFAR-100, CUB-200, and Stanford Cars (T2.b) - Even greater gains with deeper network architectures (T2.a) - Outperforms other existing related approaches which require additional parameters and computations (T2.b) | | | | Learning Rate (α) | | | |---|------------|----------|--------------------------|----------------------|--| | | Network | γ | 0.1 | 0.01 | | | • | ResNet-50 | 0.05 | 91.23 ±0.20 | 89.60 ±0.19 | | | | | 0.10 | 91.28 ± 0.26 | 87.67 ± 0.20 | | | | | 0.50 | 89.49 ± 0.27 | 84.74 ± 0.37 | | | | | BASE | 86.94 ± 1.23 | $85.04{\pm}0.32$ | | | | ResNet-101 | 0.05 | 91.58 ± 0.22 | 90.02 ± 0.22 | | | | | 0.10 | 91.26 ±0.18 | $88.35 \!\pm\! 0.28$ | | | | | 0.50 | 89.89 ±0.74 | 85.23 ± 0.50 | | | | | BASE | 88.28 ± 1.39 | $84.74{\pm}0.56$ | | | | ResNet-152 | 0.05 | 91.20 ± 0.16 | 90.00 ± 0.17 | | | | | 0.10 | 90.89 ± 0.41 | 88.31 ± 0.33 | | | | | 0.50 | 90.17 ± 0.23 | 85.23 ± 0.62 | | | | | BASE | 88.73 ± 0.62 | $84.15\pm$ 0.79 | | | | | • | | | | Table 2.a | | Learning Rate (α) | | | | | | |----------|--------------------------|------------------------------|-------------------------------|--|--|--| | γ | 0.1 | 0.01 | 0.001 | | | | | 0.01 | 85.50 ± 0.39 | 87.11 ±0.23 | 80.37 ± 0.58 | | | | | 0.05 | 90.19 ± 0.32 | 88.84 ± 0.32 | 76.98 ± 0.71 | | | | | 0.10 | 90.80 ± 0.20 | 87.31 ± 0.37 | 74.48 ± 0.55 | | | | | 0.25 | 90.32 ± 0.24 | 85.33 ± 0.43 | 73.83 ± 0.64 | | | | | 0.50 | 90.17 ±0.19 | $84.60{\scriptstyle\pm0.35}$ | 72.80 ± 0.68 | | | | | 0.75 | 90.19 ±0.18 | $84.43{\scriptstyle\pm0.30}$ | 72.01 ± 0.58 | | | | | 1.00 | 89.81 ±0.46 | $84.48{\scriptstyle\pm0.33}$ | $71.15{\pm}0.56$ | | | | | BASE | 89.44 ± 0.45 | $84.64{\pm}0.25$ | $71.32{\pm}\scriptstyle 0.60$ | | | | Table 1.a Learning Rate (α) | | Dataset | Method | 0.1 | 0.01 | |----|----------|--------|-------------------------|------------------------------| | | CIFAR10 | RBN | 90.17 ±0.22 | 84.72 ± 0.29 | | | | RBN- | 90.11 ± 0.24 | $84.50{\pm} 0.36$ | | | | IEBN | 90.18 ±0.26 | 85.34 ± 0.39 | | ıl | | IEBN- | 90.15 ± 0.24 | 85.29 ± 0.35 | | _ | | Ours | 90.80 ± 0.20 | 88.84 ± 0.32 | |) | | BASE | 89.44 ± 0.45 | $84.64{\pm}0.25$ | | , | CIFAR100 | RBN | 66.95 ± 0.57 | 58.95 ± 0.42 | | | | RBN- | 66.82 \pm 0.55 | 58.90 ± 0.61 | | | | IEBN | 66.94 ±0.39 | 60.61 \pm 0.40 | | | | IEBN- | 66.95 ± 0.32 | 60.89 \pm 0.41 | | | | Ours | 68.80 ± 0.49 | 64.01 ± 0.54 | | | | BASE | 66.01 ± 0.95 | $58.48{\pm} 0.53$ | | | CUB-200 | RBN | 48.68 ± 1.56 | 44.68 ± 0.59 | | | | RBN- | 47.14 ± 2.72 | 43.02 ± 1.22 | | | | IEBN | 54.12 ± 0.60 | 44.92 ± 0.74 | | | | IEBN- | 53.81 ± 0.76 | 44.09 \pm 0.65 | | | | Ours | 58.52 ± 0.69 | 45.31 ± 0.59 | | | | BASE | 46.26 ± 1.59 | $41.61{\scriptstyle\pm1.03}$ | | | ST-Cars | RBN | 68.17 ±1.84 | $51.87{\pm}1.34$ | | | | RBN- | 67.84 ±2.96 | 52.30 ± 1.73 | | | | IEBN | 73.60 ±0.92 | $51.06{\pm} 0.87$ | | | | IEBN- | 74.04 ±1.55 | $51.08{\pm}0.78$ | | | | Ours | 78.29 ± 0.44 | $51.18{\pm}2.16$ | | | | BASE | $64.73{\pm}2.87$ | $51.86{\pm}1.80$ | | | | | Table Ob | | Table 2.b 9. QR Codes: **GitHub**