

Revisiting Batch Norm Initialization

Jim Davis, Logan Frank

Department of Computer Science and Engineering, Ohio State University

1. Batch Normalization (BN) in Deep Neural Networks

Two per-channel operations

- Head: Normalizes data
- Tail: Learnable affine transformation

Constrains intermediate features, enabling smoother and faster optimization, and stochasticity of batch statistics can benefit generalization

2. BN: Forward Formulation

- Compute mean (μ) and variance (σ^2) across batch dimension
- Use computed statistics to normalize the data ($\mu = 0$, $\sigma^2 = 1$)
- Apply an affine transformation to the normalized data using learnable parameters: scale (γ) and shift (β)

$$\mu_B = \frac{1}{m} \sum_{i=1}^m x_i \longrightarrow \hat{X} = \frac{X - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \longrightarrow Y = \gamma \cdot \hat{X} + \beta$$

$$\sigma_B^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2 \longrightarrow \hat{X} = \frac{X - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \longrightarrow Y = \gamma \cdot \hat{X} + \beta$$

3. Observed Issues with BN

Learnable BN parameters are initialized to $\gamma = 1$ and $\beta = 0$ (identity function)

We observed that the final learned parameter values tend to remain close to their initialization

Furthermore, we observed that the BN normalization head can yield overly large values ($\pm 6\sigma$) for the proceeding layer, which can be undesirable for training

4. Proposed Adjustments to BN Scale Parameter γ

Initialize γ to a value in (0,1]

- Directly addresses overly large values after normalization by immediately scaling down the data (with no additional parameters)
- Enables BN shift parameter β to have a broader reach on scaled data before the proceeding activation function (in many cases ReLU)

Reduce the learning rate α on γ

- Divide learning rate on γ by constant c ($\alpha_{\gamma} = \alpha/c$)
- Allows for fine-grained search near initialization value
- Leave β with original learning rate, enabling it to have a broader and now more stable search of the normalized and scaled data

5. BN: Gradients and Insights

Using a fully-connected layer as illustration (below, left), we use the gradients given in the original BN paper to derive the gradient of the loss with respect to the input $\partial \mathcal{L}/\partial x_i$ (below, right)

Insights

- No effects introduced by $\gamma < 1$ for the first backward pass
- Negligible effects for remainder of training
- More insights shown in the paper

$$\sigma_B^2 = \sigma_{act}^2 \cdot \gamma_{prev}^2 \sum_{k=1}^N w_k^2 \longrightarrow \frac{\gamma_{curr}}{\gamma_{prev} \cdot \sqrt{\sigma_{act}^2 \sum w_k^2 + \epsilon}} = \frac{1}{\sqrt{\sigma_{act}^2 \sum w_k^2 + \epsilon}}$$

6. Training Details

BN scale initialization: $\gamma \in \{0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0\}$

Examine subset of values after initial CIFAR-10 experiments

BN scale learning rate reduction factor: c = 100

7. Statistical Significance

Different RNG seeds can cause variations in final score (accuracy)

For *each* experiment, we conduct 15 runs with different seeds, aggregate the results of each run (to report a mean and standard deviation), and compare to a baseline (or related approach) using a one-sided paired t-test (using a p-value of 0.05)

8. Results

- Significant improvements across multiple initial values of γ and learning rates for CIFAR-10 (T1.a), as well as CIFAR-100, CUB-200, and Stanford Cars (T2.b)
- Even greater gains with deeper network architectures (T2.a)
- Outperforms other existing related approaches which require additional parameters and computations (T2.b)

			Learning Rate (α)		
	Network	γ	0.1	0.01	
•	ResNet-50	0.05	91.23 ±0.20	89.60 ±0.19	
		0.10	91.28 ± 0.26	87.67 ± 0.20	
		0.50	89.49 ± 0.27	84.74 ± 0.37	
		BASE	86.94 ± 1.23	$85.04{\pm}0.32$	
	ResNet-101	0.05	91.58 ± 0.22	90.02 ± 0.22	
		0.10	91.26 ±0.18	$88.35 \!\pm\! 0.28$	
		0.50	89.89 ±0.74	85.23 ± 0.50	
		BASE	88.28 ± 1.39	$84.74{\pm}0.56$	
	ResNet-152	0.05	91.20 ± 0.16	90.00 ± 0.17	
		0.10	90.89 ± 0.41	88.31 ± 0.33	
		0.50	90.17 ± 0.23	85.23 ± 0.62	
		BASE	88.73 ± 0.62	$84.15\pm$ 0.79	
		•			

Table 2.a

	Learning Rate (α)					
γ	0.1	0.01	0.001			
0.01	85.50 ± 0.39	87.11 ±0.23	80.37 ± 0.58			
0.05	90.19 ± 0.32	88.84 ± 0.32	76.98 ± 0.71			
0.10	90.80 ± 0.20	87.31 ± 0.37	74.48 ± 0.55			
0.25	90.32 ± 0.24	85.33 ± 0.43	73.83 ± 0.64			
0.50	90.17 ±0.19	$84.60{\scriptstyle\pm0.35}$	72.80 ± 0.68			
0.75	90.19 ±0.18	$84.43{\scriptstyle\pm0.30}$	72.01 ± 0.58			
1.00	89.81 ±0.46	$84.48{\scriptstyle\pm0.33}$	$71.15{\pm}0.56$			
BASE	89.44 ± 0.45	$84.64{\pm}0.25$	$71.32{\pm}\scriptstyle 0.60$			

Table 1.a

Learning Rate (α)

	Dataset	Method	0.1	0.01
	CIFAR10	RBN	90.17 ±0.22	84.72 ± 0.29
		RBN-	90.11 ± 0.24	$84.50{\pm} 0.36$
		IEBN	90.18 ±0.26	85.34 ± 0.39
ıl		IEBN-	90.15 ± 0.24	85.29 ± 0.35
_		Ours	90.80 ± 0.20	88.84 ± 0.32
)		BASE	89.44 ± 0.45	$84.64{\pm}0.25$
,	CIFAR100	RBN	66.95 ± 0.57	58.95 ± 0.42
		RBN-	66.82 \pm 0.55	58.90 ± 0.61
		IEBN	66.94 ±0.39	60.61 \pm 0.40
		IEBN-	66.95 ± 0.32	60.89 \pm 0.41
		Ours	68.80 ± 0.49	64.01 ± 0.54
		BASE	66.01 ± 0.95	$58.48{\pm} 0.53$
	CUB-200	RBN	48.68 ± 1.56	44.68 ± 0.59
		RBN-	47.14 ± 2.72	43.02 ± 1.22
		IEBN	54.12 ± 0.60	44.92 ± 0.74
		IEBN-	53.81 ± 0.76	44.09 \pm 0.65
		Ours	58.52 ± 0.69	45.31 ± 0.59
		BASE	46.26 ± 1.59	$41.61{\scriptstyle\pm1.03}$
	ST-Cars	RBN	68.17 ±1.84	$51.87{\pm}1.34$
		RBN-	67.84 ±2.96	52.30 ± 1.73
		IEBN	73.60 ±0.92	$51.06{\pm} 0.87$
		IEBN-	74.04 ±1.55	$51.08{\pm}0.78$
		Ours	78.29 ± 0.44	$51.18{\pm}2.16$
		BASE	$64.73{\pm}2.87$	$51.86{\pm}1.80$
			Table Ob	

Table 2.b

9. QR Codes:

GitHub

