THE OHIO STATE UNIVERSITY

Confidence-Driven Hierarchical Classification of Cultivated Plant Stresses

Logan Frank¹, Christopher Wiegman², Jim Davis¹, Scott Shearer²

¹ Department of Computer Science & Engineering ² Department of Food, Agricultural, and Biological Engineering Ohio State University

Motivation

Billions of bushels of yield loss \rightarrow Billions of dollars in lost revenue

Billions of bushels of yield loss \rightarrow Billions of dollars in lost revenue

How are plant stresses detected and monitored?

Current monitoring methods involve unsustainable activities:

- Manual labor
- Expensive tests
- Long waiting periods

Current monitoring methods involve unsustainable activities:

- Manual labor
- Expensive tests
- Long waiting periods

Could machine learning be used for automatic image classification?

O Traditional Approach

Argmax selection on softmax / logit scores

- · Limited to specific output labels
- No confidence association with predictions
- Lack of domain knowledge

ssues:

O Addressing Shortcomings

- Hierarchies exist naturally within agriculture that define relationships between specific plant stresses and broader plant stress categories
 - Specific stresses can be grouped into more general stress categories in accordance with traditional management strategies
 - We construct semantic trees using the domain knowledge of our agricultural engineering collaborators to model the hierarchy for different datasets

O Addressing Shortcomings

- Hierarchies exist naturally within agriculture that define relationships between specific plant stresses and broader plant stress categories
 - Specific stresses can be grouped into more general stress categories in accordance with traditional management strategies
 - We construct semantic trees using the domain knowledge of our agricultural engineering collaborators to model the hierarchy for different datasets
- "Hierarchical Semantic Labeling with Adaptive Confidence", Davis et al., ISVC 2019:
 - Builds upon a pretrained base classifier
 - Post-processing inference procedure to perform hierarchical reasoning

Hierarchical Approach

OHIO STATE UNIVERSITY, COMPUTER VISION LAB

- For every node *l* in the hierarchy, compute:
 - Positive and negative likelihood distributions:
 - $P(s_l \mid l)$
 - $P(s_l \mid \neg l)$
 - Priors P(l) and $P(\neg l)$
 - Posterior probability distributions using Bayes' Rule

•
$$P(l | s_l) = \frac{P(s_l | l)P(l)}{P(s_l | l)P(l) + P(s_l | \neg l)P(\neg l)}$$

- For every node *l* in the hierarchy, compute:
 - Positive and negative likelihood distributions:
 - $P(s_l \mid l)$
 - $P(s_l \mid \neg l)$
 - Priors P(l) and $P(\neg l)$
 - Posterior probability distributions using Bayes' Rule

•
$$P(l \mid s_l) = \frac{P(s_l \mid l)P(l)}{P(s_l \mid l)P(l) + P(s_l \mid \neg l)P(\neg l)}$$

- For every node *l* in the hierarchy, compute:
 - Positive and negative likelihood distributions:
 - $P(s_l \mid l)$
 - $P(s_l \mid \neg l)$
 - Priors P(l) and $P(\neg l)$
 - Posterior probability distributions using Bayes' Rule

•
$$P(l \mid s_l) = \frac{P(s_l \mid l)P(l)}{P(s_l \mid l)P(l) + P(s_l \mid \neg l)P(\neg l)}$$

Predicted Ground Truth

- For every node *l* in the hierarchy, compute:
 - Positive and negative likelihood distributions:
 - $P(s_l \mid l)$
 - $P(s_l \mid \neg l)$
 - Priors P(l) and $P(\neg l)$
 - Posterior probability distributions using Bayes' Rule

•
$$P(l \mid s_l) = \frac{P(s_l \mid l)P(l)}{P(s_l \mid l)P(l) + P(s_l \mid \neg l)P(\neg l)}$$

• Given confidence threshold = 0.9

- Given confidence threshold = 0.9
- Analyze the argmax selected label: B
 - $s_B = 0.6$
 - $P(B \mid s_B) = 0.7$

- Given confidence threshold = 0.9
- Analyze the argmax selected label: B
 - $s_B = 0.6$
 - $P(B \mid s_B) = 0.7$
- Analyze the immediate parent: A or B
 - $s_{A \ or \ B} = s_A + s_B = 0.8$
 - $P(A \text{ or } B \mid s_{A \text{ or } B}) = 0.85$

Softmax_x output from base classifier, s_B is the softmax score for label B

- Given confidence threshold = 0.9
- Analyze the argmax selected label: B
 - $s_B = 0.6$
 - $P(B \mid s_B) = 0.7$
- Analyze the immediate parent: A or B
 - $s_{A \ or \ B} = s_A + s_B = 0.8$
 - $P(A \text{ or } B \mid s_{A \text{ or } B}) = 0.85$
- Analyze the grandparent: A, B, or C
 - $s_{A, B, or C} = s_A + s_B + s_C = 0.85$
 - $P(A, B, or C | s_{A, B, or C}) = 0.92$

Predicted

- Given confidence threshold = 0.9
- Analyze the argmax selected label: B
 - $s_B = 0.6$
 - $P(B \mid s_B) = 0.7$
- Analyze the immediate parent: A or B
 - $s_{A \ or \ B} = s_A + s_B = 0.8$
 - $P(A \text{ or } B \mid s_{A \text{ or } B}) = 0.85$
- Analyze the grandparent: A, B, or C
 - $s_{A, B, or C} = s_A + s_B + s_C = 0.85$
 - $P(A, B, or C | s_{A, B, or C}) = 0.92$
- Our final prediction label is: A, B, or C

Applied Experiments

OHIO STATE UNIVERSITY, COMPUTER VISION LAB

22

D Datasets

- Tomato subset of PlantVillage
 - Widely used in agricultural community
 - 9 stress classes and healthy
 - 256x256 RGB images
- OSU Corn
 - 10 stress classes and healthy
 - 4K resolution RGB images
- OSU Soybean
 - 5 stress classes and healthy
 - 4K resolution RGB images

O Plant Stress Relational Trees

Tomato:

Corn:

				Unknown	l										
				Stre	essed										
		Virus Fungal / Oomycete													
					H	emi-Biotrop	h	Necro	otroph						
healthy	spider mites	bacterial spot	mosaic virus	yellow leaf curl virus	late blight	septoria leaf spot	leaf mold	target spot	early blight						

						Un	known				
							Stressed				
				Biotic					Abiotic		
					Fungal				Nutrie	nt Stress	
					Necro	trophic			Nu	trient Deficie	ncy
he	ealthy	holcus spot	corn borer	common rust	grey leaf spot	northern corn leaf blight	herbicide sensitivity	nitrogen burn	phosphorus deficiency	nitrogen deficiency	magnesium / potassium deficiency

Soybean:

		Unkn	own		
			Stressed		
			Bio	tic	
				Funga	.1
healthy	dicamba damage	bacterial blight / phyllosticta	insect damage	sudden death syndrome	frogeye leaf spot

			Tom	nato						Co	rn						Soyb	ean		
	Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%
C-Persist	1.0	.91	.71	.66	.60	.44	C-Persist	1.00	.89	.70	.49	.46	.41	C-Persist	1.00	.92	.87	.87	.76	.33
C-Withdrawn	-	.00	.01	.02	.02	.03	C-Withdrawn	-	.01	.06	.13	.13	.13	C-Withdrawn	-	.04	.05	.07	.18	.18
C-Soften	-	.09	.28	.32	.38	.53	C-Soften	-	.10	.24	.37	.41	.46	C-Soften	-	.05	.07	.06	.06	.49
IC-Remain	1.0	.81	.29	.23	.22	.11	IC-Remain	1.00	.77	.39	.27	.27	.13	IC-Remain	1.00	.59	.38	.34	.28	.13
IC-Withdrawn	-	.00	.05	.05	.05	.08	IC-Withdrawn	-	.02	.21	.26	.26	.26	IC-Withdrawn	-	.09	.20	.23	.29	.29
IC-Reform	-	.19	.67	.71	.73	.80	IC-Reform	-	.21	.40	.48	.48	.61	IC-Reform	-	.32	.43	.43	.43	.58
avg-sIG	-	.78	.65	.61	.58	.49	avg-sIG	-	.65	.56	.45	.44	.40	avg-sIG	-	.76	.72	.72	.63	.40
% Valid (¬root)	100	99.8	98.6	97.6	97.5	96.6	% Valid (¬root)	100	98.6	87.9	80.9	80.9	80.9	% Valid (¬root)	100	96.3	93.0	91.9	82.1	82.1
Accuracy	82.1	86.0	94.6	95.8	96.1	98.2	Accuracy	68.8	74.7	87.7	92.4	92.4	95.8	Accuracy	80.0	81.5	84.5	85.1	85.5	98.7

			Tom	nato						Co	rn						Soyb	ean		
	Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%
C-Persist	1.0	.91	.71	.66	.60	.44	C-Persist	1.00	.89	.70	.49	.46	.41	C-Persist	1.00	.92	.87	.87	.76	.33
C-Withdrawn	-	.00	.01	.02	.02	.03	C-Withdrawn	-	.01	.06	.13	.13	.13	C-Withdrawn	-	.04	.05	.07	.18	.18
C-Soften	-	.09	.28	.32	.38	.53	C-Soften	-	.10	.24	.37	.41	.46	C-Soften	-	.05	.07	.06	.06	.49
IC-Remain	1.0	.81	.29	.23	.22	.11	IC-Remain	1.00	.77	.39	.27	.27	.13	IC-Remain	1.00	.59	.38	.34	.28	.13
IC-Withdrawn	-	.00	.05	.05	.05	.08	IC-Withdrawn	-	.02	.21	.26	.26	.26	IC-Withdrawn	-	.09	.20	.23	.29	.29
IC-Reform	-	.19	.67	.71	.73	.80	IC-Reform	-	.21	.40	.48	.48	.61	IC-Reform	-	.32	.43	.43	.43	.58
avg-sIG	-	.78	.65	.61	.58	.49	avg-sIG	-	.65	.56	.45	.44	.40	avg-sIG	-	.76	.72	.72	.63	.40
% Valid (¬root)	100	99.8	98.6	97.6	97.5	96.6	% Valid (¬root)	100	98.6	87.9	80.9	80.9	80.9	% Valid (¬root)	100	96.3	93.0	91.9	82.1	82.1
Accuracy	82.1	86.0	94.6	95.8	96.1	98.2	Accuracy	68.8	74.7	87.7	92.4	92.4	95.8	Accuracy	80.0	81.5	84.5	85.1	85.5	98.7

			Tom	nato						Co	rn						Soyb	ean		
	Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%
C-Persist	1.0	.91	.71	.66	.60	.44	C-Persist	1.00	.89	.70	.49	.46	.41	C-Persist	1.00	.92	.87	.87	.76	.33
C-Withdrawn	-	.00	.01	.02	.02	.03	C-Withdrawn	-	.01	.06	.13	.13	.13	C-Withdrawn	-	.04	.05	.07	.18	.18
C-Soften	-	.09	.28	.32	.38	.53	C-Soften	-	.10	.24	.37	.41	.46	C-Soften	-	.05	.07	.06	.06	.49
IC-Remain	1.0	.81	.29	.23	.22	.11	IC-Remain	1.00	.77	.39	.27	.27	.13	IC-Remain	1.00	.59	.38	.34	.28	.13
IC-Withdrawn	-	.00	.05	.05	.05	.08	IC-Withdrawn	-	.02	.21	.26	.26	.26	IC-Withdrawn	-	.09	.20	.23	.29	.29
IC-Reform	-	.19	.67	.71	.73	.80	IC-Reform	-	.21	.40	.48	.48	.61	IC-Reform	-	.32	.43	.43	.43	.58
avg-sIG	-	.78	.65	.61	.58	.49	avg-sIG	-	.65	.56	.45	.44	.40	avg-sIG	-	.76	.72	.72	.63	.40
% Valid (¬root)	100	99.8	98.6	97.6	97.5	96.6	% Valid (¬root)	100	98.6	87.9	80.9	80.9	80.9	% Valid (¬root)	100	96.3	93.0	91.9	82.1	82.1
Accuracy	82.1	86.0	94.6	95.8	96.1	98.2	Accuracy	68.8	74.7	87.7	92.4	92.4	95.8	Accuracy	80.0	81.5	84.5	85.1	85.5	98.7

			Tom	ato						Co	rn						Soyb	ean		
	Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%
C-Persist	1.0	.91	.71	.66	.60	.44	C-Persist	1.00	.89	.70	.49	.46	.41	C-Persist	1.00	.92	.87	.87	.76	.33
C-Withdrawn	-	.00	.01	.02	.02	.03	C-Withdrawn	-	.01	.06	.13	.13	.13	C-Withdrawn	-	.04	.05	.07	.18	.18
C-Soften	-	.09	.28	.32	.38	.53	C-Soften	-	.10	.24	.37	.41	.46	C-Soften	-	.05	.07	.06	.06	.49
IC-Remain	1.0	.81	.29	.23	.22	.11	IC-Remain	1.00	.77	.39	.27	.27	.13	IC-Remain	1.00	.59	.38	.34	.28	.13
IC-Withdrawn	-	.00	.05	.05	.05	.08	IC-Withdrawn	-	.02	.21	.26	.26	.26	IC-Withdrawn	-	.09	.20	.23	.29	.29
IC-Reform	-	.19	.67	.71	.73	.80	IC-Reform	-	.21	.40	.48	.48	.61	IC-Reform	-	.32	.43	.43	.43	.58
avg-sIG	-	.78	.65	.61	.58	.49	avg-sIG	-	.65	.56	.45	.44	.40	avg-sIG	-	.76	.72	.72	.63	.40
% Valid (¬root)	100	99.8	98.6	97.6	97.5	96.6	% Valid (¬root)	100	98.6	87.9	80.9	80.9	80.9	% Valid (¬root)	100	96.3	93.0	91.9	82.1	82.1
Accuracy	82.1	86.0	94.6	95.8	96.1	98.2	Accuracy	68.8	74.7	87.7	92.4	92.4	95.8	Accuracy	80.0	81.5	84.5	85.1	85.5	98.7

• As confidence increases:

			Tom	ato						Co	rn						Soyb	ean		
	Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%
C-Persist	1.0	.91	.71	.66	.60	.44	C-Persist	1.00	.89	.70	.49	.46	.41	C-Persist	1.00	.92	.87	.87	.76	.33
C-Withdrawn	-	.00	.01	.02	.02	.03	C-Withdrawn	-	.01	.06	.13	.13	.13	C-Withdrawn	-	.04	.05	.07	.18	.18
C-Soften	-	.09	.28	.32	.38	.53	C-Soften	-	.10	.24	.37	.41	.46	C-Soften	-	.05	.07	.06	.06	.49
IC-Remain	1.0	.81	.29	.23	.22	.11	IC-Remain	1.00	.77	.39	.27	.27	.13	IC-Remain	1.00	.59	.38	.34	.28	.13
IC-Withdrawn	-	.00	.05	.05	.05	.08	IC-Withdrawn	-	.02	.21	.26	.26	.26	IC-Withdrawn	-	.09	.20	.23	.29	.29
IC-Reform	-	.19	.67	.71	.73	.80	IC-Reform	-	.21	.40	.48	.48	.61	IC-Reform	-	.32	.43	.43	.43	.58
avg-sIG	-	.78	.65	.61	.58	.49	avg-sIG	-	.65	.56	.45	.44	.40	avg-sIG	-	.76	.72	.72	.63	.40
% Valid (¬root)	100	99.8	98.6	97.6	97.5	96.6	% Valid (¬root)	100	98.6	87.9	80.9	80.9	80.9	% Valid (¬root)	100	96.3	93.0	91.9	82.1	82.1
Accuracy	82.1	86.0	94.6	95.8	96.1	98.2	Accuracy	68.8	74.7	87.7	92.4	92.4	95.8	Accuracy	80.0	81.5	84.5	85.1	85.5	98.7

• As confidence increases:

- Many originally correct predictions are kept at the terminal level

			Tom	ato						Co	rn						Soyb	ean		
	Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%
C-Persist	1.0	.91	.71	.66	.60	.44	C-Persist	1.00	.89	.70	.49	.46	.41	C-Persist	1.00	.92	.87	.87	.76	.33
C-Withdrawn	-	.00	.01	.02	.02	.03	C-Withdrawn	-	.01	.06	.13	.13	.13	C-Withdrawn	-	.04	.05	.07	.18	.18
C-Soften	-	.09	.28	.32	.38	.53	C-Soften	-	.10	.24	.37	.41	.46	C-Soften	-	.05	.07	.06	.06	.49
IC-Remain	1.0	.81	.29	.23	.22	.11	IC-Remain	1.00	.77	.39	.27	.27	.13	IC-Remain	1.00	.59	.38	.34	.28	.13
IC-Withdrawn	-	.00	.05	.05	.05	.08	IC-Withdrawn	-	.02	.21	.26	.26	.26	IC-Withdrawn	-	.09	.20	.23	.29	.29
IC-Reform	-	.19	.67	.71	.73	.80	IC-Reform	-	.21	.40	.48	.48	.61	IC-Reform	-	.32	.43	.43	.43	.58
avg-sIG	-	.78	.65	.61	.58	.49	avg-sIG	-	.65	.56	.45	.44	.40	avg-sIG	-	.76	.72	.72	.63	.40
% Valid (¬root)	100	99.8	98.6	97.6	97.5	96.6	% Valid (¬root)	100	98.6	87.9	80.9	80.9	80.9	% Valid (¬root)	100	96.3	93.0	91.9	82.1	82.1
Accuracy	82.1	86.0	94.6	95.8	96.1	98.2	Accuracy	68.8	74.7	87.7	92.4	92.4	95.8	Accuracy	80.0	81.5	84.5	85.1	85.5	98.7

• As confidence increases:

- Many originally correct predictions are kept at the terminal level
- Varying levels of softening across the datasets

			Tom	ato						Co	rn						Soyb	bean		
	Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%		Base	50%	80%	85%	90%	95%
C-Persist	1.0	.91	.71	.66	.60	.44	C-Persist	1.00	.89	.70	.49	.46	.41	C-Persist	1.00	.92	.87	.87	.76	.33
C-Withdrawn	-	.00	.01	.02	.02	.03	C-Withdrawn	-	.01	.06	.13	.13	.13	C-Withdrawn	-	.04	.05	.07	.18	.18
C-Soften	-	.09	.28	.32	.38	.53	C-Soften	-	.10	.24	.37	.41	.46	C-Soften	-	.05	.07	.06	.06	.49
IC-Remain	1.0	.81	.29	.23	.22	.11	IC-Remain	1.00	.77	.39	.27	.27	.13	IC-Remain	1.00	.59	.38	.34	.28	.13
IC-Withdrawn	-	.00	.05	.05	.05	.08	IC-Withdrawn	-	.02	.21	.26	.26	.26	IC-Withdrawn	-	.09	.20	.23	.29	.29
IC-Reform	-	.19	.67	.71	.73	.80	IC-Reform	-	.21	.40	.48	.48	.61	IC-Reform	-	.32	.43	.43	.43	.58
avg-sIG	-	.78	.65	.61	.58	.49	avg-sIG	-	.65	.56	.45	.44	.40	avg-sIG	-	.76	.72	.72	.63	.40
% Valid (¬root)	100	99.8	98.6	97.6	97.5	96.6	% Valid (¬root)	100	98.6	87.9	80.9	80.9	80.9	% Valid (¬root)	100	96.3	93.0	91.9	82.1	82.1
Accuracy	82.1	86.0	94.6	95.8	96.1	98.2	Accuracy	68.8	74.7	87.7	92.4	92.4	95.8	Accuracy	80.0	81.5	84.5	85.1	85.5	98.7

• As confidence increases:

- Many originally correct predictions are kept at the terminal level
- Varying levels of softening across the datasets
- Several originally incorrect predictions are reformed to a correct generalized label

O Examples at 90% Confidence

Incorrect & Reformed

Ground Truth: Holcus Spot

Base Classifier: Corn Borer Final Label: Biotic

Implication

 We now have correct information on how to proceed with treating a stress, maintaining user trust

O Examples at 90% Confidence

Correct & Withdrawn

Ground Truth: Late Blight

Base Classifier: Late Blight Final Label: Unknown (root)

Implication

- Further analysis is required to make an accurate statement regarding the stress
- Prefer to withdraw than to make an incorrect prediction

O Summary

- Hierarchical classification approach for plant stress identification that
 addresses many shortcomings of previous works
 - Ability to output generalized labels
 - Each prediction has a confidence guarantee
 - Methods for incorporating domain knowledge
- CNN platform with improved potentially for widespread adoption in the agricultural community
- Future Work
 - Experimenting with different tree structures (e.g., phylogenetic, etc.)
 - Implementing on drones for real time surveillance of crop fields

Code available: https://www.github.com/loganfrank/agriculture

O Thank You

Questions? Please come to my Q&A session!

Code available: https://www.github.com/loganfrank/agriculture

OHIO STATE UNIVERSITY, COMPUTER VISION LAB