CSE2221 Midterm 1 Sample

1. Using the below method contract and header, what can we say about the result of powerTwo?

/*x

* Calculate the square of a value within a relative error eps
*

* Q@requires i > 0 and eps > O

* Q@ensures |powerTwo - i"2| / i"2 <= eps and powerTwo >= 0
*/

private static double powerTwo(double i, double eps){...}

What is the most accurate answer for the range of powerTwo(4, 0.5)?
A. [15.5, 16.5]

B. [8, 24]

C. [14, 18]

D. (15.5, 16.5)

E. None of the above

What about powerTwo(-2, 0.01)?

A. [3.98, 4.02]

B. [3.96, 4.04]

C. (3.96, 4.04)

D. exactly 4

E. None of the above

2. Fill in the following type table:
Expression Type
xmlTree.child(5).child(1)
(5/2) == 25
256 + “1024”
xmlTree.child(0).label()
{1, 2, 3, 4, 5}
40/2%7/10

3. Consider the following string, what is the result of the 3 loops?

Loop #1:

string password = "Loganscarm3np4sswOrd";

boolean hasUpper = false;
int 1 = 1;
while(i < password.length && !'hasUpper){
char ¢ = password.charAt(i);
if (Character.isUpperCase(c)){
hasUpper = true;

¥

i++;
}
i =
hasUpper =

Loop #2:

string password = "Loganscarm3np4sswOrd";

boolean hasUpper = true;

for(int i = 0; i < password.length; i++){
char ¢ = password.charAt(i);
hasUpper = Character.isUpperCase(c);

}

i =
hasUpper =

Loop #3:

string password = "Loganscarm3np4sswOrd";

boolean hasLower = false;
int i = 0;
while(i < password.length() && !hasLower){
char ¢ = password.charAt(i);
if (Character.isDigit(c)){
hasLower = true;

}
i++;
}
i =
hasLower =

4. After calling the below method, what are the values of the variables?

private static double functionName(int x, int y){

X =7y;
x —= 3;
return y / x;

}

int j = 10;

int i = 2;
double x = functionName(i, j);

xu. e
\

5. We wish to perform max-pooling on an array of integers. Given an array of size 10 and filter size 3, the result will be an
array of size [arraySize - filterSize + 1], in this case it will be [10 - 3 + 1] = 8.

Max-pooling is done as following: Given some sub-array that is equal to the filter size (in this case, 3), condense the 3
values into 1 value that is the maximum value in the sub-array.

For example:

int[] numbers = {1, 3, 4, 6, 1, 7, 8, 10, 11, 0}

The result of max-pooling is:

{4, 6, 6, 7, 8, 10, 11, 11}

This is because on the first iteration we have the sub-array [1, 3, 4], the maximum of this sub-array is 4. On the next
iteration, we shift the filter up by 1 (this is called stride). Our new sub-array is [3, 4, 6], the maximum of this sub-array is
6. On the next, now 3rd, iteration, we shift our filter up by 1 again. Our new sub-array is [4, 6, 1], which has a maximum

value of 6.

The iterations will continue until we reach the final sub-array, which is [10, 11, 0]. The maximum of this sub-array is

11. After this, we have succesfully completed max-pooling.

Given the function “max” and the “main” function below, implement the function “maxPool” below main

to where it satisfies the problem mentioned above.

/*%

* Determine the maximum value in an integer array.

*
* Q@requires arr.length > O

* Qensures [the maximum value in arr is returned]

*/

private static int max(int[] arr){...}

public static void main(String[] args){
int[] numbers = {7, 3, -8, 1, 5, 2,
int filterSize = 3;
numbers = maxPool (

}

// Implement maxPool as a public method below this line

-3, -4,

10, 2,

-11, 6, 3, 1, 0, 9};

); // You choose what is passed to maxPool

This page was intentionally left blank for extra space for #5

6. Complete the method body for “containsMirror” so that it satisfies the method contract. Do NOT use multiple returns
or a break statement. Your implementation should also stop early if a mirror is found.

A mirror is defined as the following: mirror(x) = -x. For example, 46 is the mirror of -6 and -42 is the mirror of +42.

/*x

* Returns true if the array contains mirror values, false if not.
*

* Qrequires [arr does not contain 0]

* Qensures containsMirror = [arr contains mirror values]

*/

private static boolean containsMirror(int[] arr){

7. Draw the tree for the following XML document:

<cse2221 size="40">
Software 1: Concepts
<lecture time="4:10PM" room="DL369"/>
<lab time="4:10PM" room="P0155"/>
<instructor gta="true">Logan Frank</instructor>
<students>
<student year="2">Paolo</student>
<student name="Bettina" year="1"></student>
</students>
</cse2221>

8. Answer the following multiple choice questions

8.1. Is the sum of two irrational numbers irrational?
A. Yes

B. No

C. Sometimes

8.2. What is the implementer’s responsibility?
Meeting the postconditions

Having efficient code

Writing clean code with comments

All of the above

Sows

8.3. Fill in the blank and answer the question: What is “num” in the
statement, argument

expression, argument

statement, formal parameter

expression, formal parameter

cawp

Math.abs(num)?

9. Tracing table, you know the drill.

Code

State (Variable Names

str = “Ohio State”
i=9
odds = “”

evens = “”

while (i >=0) {

str =
i pr—
odds =

evens =

i1 %2==1){

str =
i P—
odds =

evens —

odds += str.charAt(i); {

str =
i=
odds =

evens =

} else {

str =
i =
odds =

evens —

evens += str.charAt(i);

str =
i =
odds =

evens —

str =
i =
odds =

evens =

str =
i =
odds =

evens —

10. Recall from project 2 that Newton iteration can be used to compute the square root of a number with:
repeatedly assign r = (r + x /1) / 2 until (|r? - x| / x) < €2

Now we wish to implement the additionally activity: modify root to perform the k-th root of x within relative error epsilon.
Given the items below, derive the formula (so it is in the same form as what is used in the project, mentioned above) to use
in Newton iteration to compute the k-th root of x within relative error epsilon.

We want to find ¥ = x, therefore we let f(r) =r* —x

Use the general form of the Newton-Raphson iterative equation (given below) to derive your solution, show your work (note
/' is the derivative of f).

a1 = = (f(ra)/f'(rn))

Now, implement the root function using your derived equation below. You may use Math.abs and Math.pow. Make sure no
zero division is performed.

/*x
* Computes estimate of k-th root of x to within relative error of epsilon.
*/

private static double root(double x, int k, double epsilon){

This page was intentionally left blank for scratch work.

