
CSE 2221 - Project 7
TaskTaskTaskTaskTaskTaskTaskTaskTaskTaskTaskTaskTaskTaskTaskTaskTask
Gain familiarity with recursion by using it to evaluate arithmetic expressions. Gain familiarity with XML-
Tree objects and methods. Gain familiarity with NaturalNumber objects and methods.

Original Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project InstructionsOriginal Project Instructions
Project 7 Instructions from CSE2221 Project Site

Program RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram RequirementsProgram Requirements

• Implement a recursive algorithm that will compute an expression correctly from an XMLTree object

• You will implement the above algorithm twice where one works for ints and one works for Natural-
Number objects

Creating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To RunCreating XMLTree Expressions & How To Run
You can create expressions represented as XMLTrees using the jar file here.

To run the jar file, in some cases you can double click. If your OS does not allow this (for security rea-
sons), you can open up a terminal (MacOS & Linux) or cmd prompt (Windows), navigate through your
directories/folders using ”cd <directory name>” (works for all OS), and run the jar file using ”java -jar
xml-expression-generator.jar”. If you would like to list what directories/folders are present in your current
directory (to know what directory you are in, type ”pwd” for MacOS & Linux and ”echo %cd%” for Win-
dows), type ”ls” (MacOS & Linux) or ”dir” (Windows).

Example of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTreeExample of Created XMLTree

This is an example for 12 * (7 - 3) / 6 + 8

<expression>
<plus>
<divide>
<times>
<number value="12" />
<minus>
<number value="7" />
<number value="3" />

</minus>
</times>
<number value="6" />

</divide>
<number value="8" />

</plus>
</expression>

Tips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to NoteTips, Rules, & Things to Note

• Order of computation follows standard PEMDAS, except we won’t have an exponentiation

• Top level element is an <expression>, underneath <expression> you can have <plus>, <minus>,
<multiply>, <divide>, and <number>

• <number> can only be a NON-NEGATIVE value

• There are no text nodes

1

http://web.cse.ohio-state.edu/software/2221/web-sw1/assignments/projects/xmltree-evaluator/xmltree-expression-evaluator.html
http://web.cse.ohio-state.edu/software/common/xml-expression-generator.jar

• <plus>, <minus>, <multiply>, and <divide> nodes WILL have TWO children, NO LESS

• <number> nodes will have ZERO children, NO MORE

• NO LOOPS. none. zero.

• ONE RETURN per method

• No using the toInt or toString functions

• There should be no TODOs left in your code when you submit

• Should you pull values out as ints or convert directly from string to NaturalNumber?

• You can assume the XMLTree is correctly formatted

• Make sure you do not divide by 0 or do (num1 - num2) where num2 > num1, Use the compo-
nents.utilities.Reporter’s fatalErrorToConsole method to report the error and make the program ter-
minate: FOR THE NATURALNUMBER (PART 2) ONLY

• Again, know when to use transferFrom over copyFrom

• Watch out for aliasing

Recursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method StructureRecursive Method Structure

private static int evaluate(XMLTree exp) {
declare our variable to return
if (base case condition) {

set our return variable to the result of our base case
} else {

evaluate subproblem(s)
combine result(s) of evaluate our subproblem(s), set return variable equal to this

}
return the variable variable

}

StepsStepsStepsStepsStepsStepsStepsStepsStepsStepsStepsStepsStepsStepsStepsStepsSteps

1. Copy and paste the ProjectTemplate project to create a new project folder for this project

2. Name the project XMLTreeExpressionEvaluator

3. Open the src folder, then open (default package)

4. Rename any ONE file to XMLTreeIntExpressionEvaluator.java

5. Delete the other files

6. Open XMLTreeIntExpressionEvaluator.java

7. Go to this page and copy and paste the source code there into XMLTreeIntExpressionEvaluator.java

8. Implement the recursive evaluate function

9. Start by asking yourself, “what is our base case?”. In other words, what is the smallest subproblem we
can trivially solve?

10. Next, ask yourself, how can we make this problem easier? What subproblems exist in my current
problem?

11. Once XMLTreeIntExpressionEvaluator.java is done and working successfully, copy
XMLTreeIntExpressionEvaluator.java to create XMLTreeNNExpressionEvaluator.java

2

http://web.cse.ohio-state.edu/software/common/doc/index.html?components/utilities/Reporter.html
http://web.cse.ohio-state.edu/software/common/doc/index.html?components/utilities/Reporter.html
http://web.cse.ohio-state.edu/software/2221/web-sw1/assignments/projects/xmltree-evaluator/XMLTreeIntExpressionEvaluator.java

12. Replace the evaluate method and method contract from XMLTreeIntExpressionEvaluator.java with:

/**
* Evaluate the given expression.
*
* @param exp
* the {@code XMLTree} representing the expression
* @return the value of the expression
* @requires <pre>
* [exp is a subtree of a well-formed XML arithmetic expression] and
* [the label of the root of exp is not "expression"]
* </pre>
* @ensures evaluate = [the value of the expression]
*/
private static NaturalNumber evaluate(XMLTree exp) {
}

13. Reimplement the evaluate algorithm from XMLTreeIntExpressionEvaluator.java, except this time do
all computation with NaturalNumbers and return NaturalNumbers

14. Once completed and convinced your code looks good: Zip it up witht the naming scheme I recommend
and submit to Carmen

3

